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The history of slope stability analyses by the method of slices or columns in geotechnical 

engineering is well documented in the textbook by Duncan, Wright and Brandon (2014) and 

elsewhere.  The procedures used for slope stability analysis started out as hand or graphical 

methods, but with the introduction of limit equilibrium methods of analysis most calculations 

became computerized. Many engineers seem to believe that these computer programs 

automatically give the correct answer, but, in addition to the “garbage in – garbage out” rule 

still holding, these analyses are simplified and thus approximate at best.  There are also specific 

features of the common methods of analysis that may limit their usefulness in various ways.  

 

To start with, there are two ways that the factor of safety has been defined in the analysis of 

slope stability using the method of slices or columns. 

 

The first is the simple definition that the factor of safety is the sum of the resisting forces 

around the failure plane divided by the sum of the driving forces.  This was used in early 

analyses using the method of slices and many geotechnical engineers appear to still believe that 

this is the way the factor of safety is calculated. 

 

However, most modern computer programs define the factor of safety differently, as a strength 

reduction factor.  The factor of safety is that factor by which the assumed shear strengths must 

be reduced in order that the sums of the driving and resisting forces are equal.   

 

A common argument in support of this definition is that the shear strengths around the failure 

plane are the greatest source of uncertainty in the analysis, so that it makes sense to factor the 

shear strengths.  That is questionable.  In practice, most geotechnical engineers adopt 

conservative values for the shear strengths or shear strength parameters, so that the 

uncertainty in these values is already considered. A better, contrary, argument is that the 

methods that define the factor of safety this way force the factor of safety to be the same at 

the base of each slice and obscure the fact that some parts of the potential slip surface may be 

overstressed, even if the overall factor of safety is above 1.0.  That is a good reason for normally 

requiring an overall factor of safety of 1.5 in practice.  If the factor of safety is 1.5 or greater, 

then the local factors of safety are less likely to fall below 1.0 and the risk of progressive failure 

should be diminished.  Also, as shown in a separate article, the omission of seepage forces in 



limit equilibrium methods of analysis can cause the factor of safety to be overestimated by as 

much as 30 percent, so that is yet another reason for requiring a factor of safety of 1.5.  On the 

other hand, 3D effects, while they can in some cases reduce the factor of safety, normally 

increase it, sometimes very significantly, so that requiring a 2D factor of safety of 1.5 for those 

cases may be excessive.  

 

Using the second definition of the factor of safety, the sums of the driving and resisting forces 

are made equal, therefore the methods of analysis that use it are called “limit equilibrium 

analyses”.  Some methods of analysis, such as Bishop’s Simplified Method, are limit equilibrium 

analyses but they do not “fully satisfy equilibrium”, meaning that force and moment 

equilibrium is not fully satisfied for each slice or column and thus for the potential sliding mass 

as a whole.  Methods which do “fully satisfy equilibrium” such as those of Morgenstern and 

Price (1965) or Spencer (1967) are now generally preferred by both academics and 

practitioners. 

 

The principal direct implication of how the factor of safety is defined is that with the first, 

simple definition one can calculate “local factors of safety” for each slice or column whereas in 

limit equilibrium analyses, one cannot do that.  Equations of equilibrium are set up and then 

solved for two unknowns – the factor of safety and a second unknown which usually has to do 

with the assumptions made regarding side forces acting on the slices of columns.  In Spencer’s 

Method this unknown is the angle of inclination of the side forces, which is assumed to be 

constant for all slices or columns. In the Morgenstern and Price method it is a scale factor for 

the side forces whose varying angles of inclination are specified by the user.   

 

Again, with the second definition of the factor of safety there is only one factor of safety and it 

applies to each slice or column as well as the overall potential sliding mass. As noted already, 

this obscures the fact that some segments of the potential slip surface are likely closer to failure 

than others, but it also forces an at least somewhat artificial distribution of the normal and 

shear stresses around the potential slip surface. The normal stresses will impact the shear 

strengths calculated for non-cohesive materials, that is, materials for which the strength is at 

least in part specified to be a function of the normal stress on the potential slip surface. This is 

demonstrated subsequently in several examples which show the normal stress distributions 

obtained using limit equilibrium analyses and a simple method of analysis which is not a limit 

equilibrium analysis.  It turns out that the difference in the normal stresses is the big 

contributing factor to any differences in the factor of safety that are computed by the two 

methods. 

 



Given the previous discussion, one might then ask, “why do people generally prefer methods 

that fully satisfy equilibrium?”  The basic answer to this question seems to be that engineers 

are taught in undergraduate classes that any analysis of the stresses in a rigid body should “fully 

satisfy equilibrium”, and it certainly looks more elegant or sophisticated to do this.  But is it 

correct for a potential sliding mass that is deformable and can’t take tension? 

 

The second definition of the factor of safety and the quest to fully satisfy equilibrium implies 

that the potential sliding mass acts as a rigid body.  Leaving aside for the moment whether this 

is reasonable or not for real slopes, this forces the factor of safety to be the same for all slices, 

and, as already noted, forces an at least somewhat artificial distribution of the normal and 

shear stresses around the potential slip surface, but it has other implications as well. These 

implications have to do with the development of tensile interslice forces and the calculated line 

of thrust, and also whether or not the solution converges and, further, whether or not it 

converges to the correct solution. 

 

Solutions that “fully satisfy equilibrium” will tend to develop negative interslice forces wherever 

there is a hump in the potential slip surface and at the upper end of a shallow potential slip 

surface.  The computed factors of safety in these cases may be quite unconservative because 

the assumed rigid body gets hung up. Thus, the user needs to insert tension cracks as necessary 

to eliminate any tensile interslice forces, since soil and rock masses generally have no tensile 

capacity.  The user also then has to decide whether a model with perhaps artificially deep 

tension cracks is real or not. 

 

More attention in the literature has been applied to the line of thrust, that is the locus of the 

points of application of the interslice forces, and this has generally been the principal 

recommended test for whether a solution is reasonable or not.  Ideally the line of thrust should 

be located at something like the third point of the slices or columns but it should never travel 

outside the boundaries of the potential sliding mass, as it commonly does in problems with 

tensile interslice forces and sometimes does in pseudo-static seismic analyses.  

 

The occurrence of tensile interslice forces and odd lines of thrust is illustrated using the 

example of a relatively simple embankment dam, but it is also helpful to compare the results 

using a method that “fully satisfies equilibrium”, in this case Spencer’s Method, with a method 

that uses the first, simple definition of the factor of safety, in this case the Ordinary Method of 

Columns (OMC), a 3D implementation of the Ordinary Method of Slices (OMS).  The OMC and 

some past criticisms of the OMS will be described in more detail in a subsequent article, but for 

this example, it is sufficient to say that it uses the first definition of the factor of safety and that 

interslice, or intercolumn, forces are neglected.  It is as if a bunch of square columns coated 



with Teflon can slide up and down as the overall slope deforms. Thus, the OMC implies that the 

potential sliding mass is deformable whereas Spencer’s method implies that the potential 

sliding mass is rigid. 

 

Figure 1 shows results for the stability of the downstream slope of a simple dam embankment 

analysed using both Spencer’s Method and the OMC.  In Figure 1(a) using Spencer’s Method 

causes the development of tensile interslice forces, indicated by slices coloured red, and causes 

the line of thrust, shown as a red line, to swing outside the potential sliding mass.   

 

 
 

Figure 1(a) – No Tension Crack, Spencer 

 

 
 

Figure 1(b) – No Tension Crack, OMC 

 

In Figure 1(c), the tensile interslice forces in the solution by Spencer’s method have been 

eliminated by inserting a tension crack, slightly lowering the computed factor of safety. 



However, instead of the line of thrust going way outside of the potential sliding mass at the top 

of the slope, it now has a hiccup at the toe.  

 
 

Figure 1(c) – With Tension Crack, Spencer 

 

 
 

Figure 1(d) – With Tension Crack, OMC 

 

Note that in both Figures 1(b) and 1(d), the OMC gives a lower factor of safety than Spencer’s 
method.  This is partly because Spencer’s method does not account for seepage forces, but the 
seepage forces in this problem are not very large relative to the gravity forces and most of the 
difference results from the difference in the distribution of the normal stresses on the bases of 
the columns.  In this problem both the core and the downstream shell are specified to have shear 
strengths with both cohesive and non-cohesive components and the non-cohesive component is 
sensitive to the normal forces.  The normal forces in the figures have different scales because the 
scale is set so that the maximum values have the same length, but the vector sums of the normal 
forces are equal.  However, with Spencer’s method more of the load is transferred towards the 
ends of the slip surface and, overall, this increases the shear strengths and the factor of safety.  



With the OMC there is no internal load transfer and the normal stress results solely from the 
weight of the column in question.  The truth likely lies somewhere in between these two 
extremes.  If the shear strengths are specified entirely as cohesions and there are no seepage 
forces, that is, the water conditions are hydrostatic, the companion article on the inclusion of 
seepage forces shows that the OMC and Spencer’s method give identical results. 
 

If the engineer is troubled by the line of thrust in Figure 1(c) and wants to spend more time on 

the problem, it can be eliminated by halving the depth of the tension crack, as shown in Figure 

1(e). The resulting factor of safety of 1.57 might be considered the “best answer” by many 

authorities, but the corresponding value of 1.44 by the OMC is a safer and likely more realistic 

value, given that the dam embankment is not rigid and must be subject to some seepage 

forces. 

 

 
 

Figure 1(e) – With Shorter Tension Crack, Spencer 

 

 

The difficulty of obtaining what Morgenstern and Price called a “physically acceptable” solution, 

without tension and with the line of thrust contained within the potential sliding mass, using 

Spencer’s method illustrates the importance of the user being able to readily see the line of 

thrust and the occurrence of tension.   

 

Figures 1(f) and 1(g) illustrate how these problems can be compounded by the addition of 

external loads such as pseudo-static seismic forces. In Figure 1(f) the problem with the line of 

thrust seen in Figure 1(c) is now aggravated. It is not uncommon for the line of thrust in 

pseudo-static analyses using methods that fully satisfy equilibrium to come out of the slope and 

the engineer must decide whether he/she can live with that or not.  In the corresponding 

analysis by the OMC, the normal stresses on the bases of the columns are not impacted by the 



added seismic loads so that a nicer looking distribution of the normal forces are obtained and 

the same shear strengths apply around the slip surface as were used in the static analysis.  But, 

pseudo-static analyses are approximate anyway and these points are less important than 

whether standard static strength properties are used or whether adjustments, which might be 

considerable, are made for different drainage conditions and rates of loading.  

 

 
 

Figure 1(f) – With Tension Crack and Seismic Coefficient, Spencer 

 

 

 
 

Figure 1(g) – With Tension Crack and Seismic Coefficient, OMC 

 

 

This question of the reasonableness of the results of slope stability analyses obtained using the 

various forms of the method of slices has been repeatedly addressed in the literature but, 



sadly, it is often ignored in practice.  Morgenstern and Price (1965), in their very elegant paper 

which introduced the concept of a user-specified distribution of the angle of inclination, 

emphasized that there were multiple possible solutions and that the user should vary the 

assumed distribution of the angle of inclination so that a reasonable line of thrust was 

achieved, if possible. Whitman and Bailey (1967), who correctly took Morgenstern and Price to 

be the gold standard for analyses that fully satisfy equilibrium, said “the use of the 

Morgenstern-Price approach together with a computer does not free the engineer from making 

a judgment concerning the reasonableness of a solution.”  Chin and Fredland (1983) noted 

some difficulties with methods that fully satisfy equilibrium, including the fact that they 

sometimes have trouble converging to a solution, and suggest some possible workarounds. 

Krahn (2003) discussed the limits of limit equilibrium analyses including convergence issues and 

difficulties with applying external forces.  He suggested that the latter can best be addressed 

using a hybrid finite element - limit equilibrium analysis but that seems unwieldy for routine 

use.  

 

Wright (2013), in a “must watch” lecture, included several case histories that illustrate various 

problems with methods that fully satisfy equilibrium.  Wright emphasized that there is no 

absolutely correct solution, and suggested that the engineer should always use at least two 

computer programs for any critical problem, in part because computer programs may include 

hidden assumptions and also may not show the intermediate results that are necessary to 

judge the reasonableness of the final result.  Or, as an alternative, the engineer can use one 

program that offers two good methods of solution and makes all the key data visible. 
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