TSLOPE – how to analyse a slope for noncritical slip surfaces

TSLOPE is a 2D and 3D limit equilibrium analysis program used for slope stability analysis.

This example of the use of TSLOPE shows how we can locate critical slip surfaces using a search methodology, and show the difference in 2D and 3D analysis of the same slope.

The example is from Chapter 14 Important Details of Stability Analyses, of Duncan et al. 2014.¹

They state:

In some cases the slip surface with the minimum factor of safety may not be the slip surface of greatest interest. For example, the minimum factor of safety for the embankment shown in Figure 14.7 is 1.15. This factor of safety corresponds to an infinite slope failure in the cohesionless fill. Also shown in Figure 14.7 is a deep circle that has a factor of safety of 1.21, which is higher than the factor of safety for the shallower, infinite slope slip surface. However, if sliding occurred along the deep circle, it would have a far more severe consequence than slope ravelling on the shallow infinite slope surface. Ravelling of material down the slope might, at the most, represent a maintenance problem. In contrast, failure along the deeper surface and the associated factor of safety of 1.21 would be considered unacceptable, while a factor of safety of 1.15 for the shallower, critical slip surface might be acceptable.

Figure 14.7 Slope with shallow critical slip surface and deeper, locally critical circle.

We have used Scribe² to capture the workflow that shows how the slope model is entered into TSLOPE, and how the stability analyses are carried out to set up the search for the infinite slope and Deep circle slope cases shown on Figure 14.7. We used Spencer's method for all analyses shown in this example.

We enter the geometry of the slope by four points on the ground surface (our Top surface). This simple 2D geometry is automatically extruded to a 3D Extruded Section. There are three layers, fill (19 ft thick), clay (15 ft thick) with underlying rock. We define the top of clay and top of rock with horizontal planes that complete the TSLOPE model. Appropriate material properties are assigned to each layer.

¹ Duncan, J.M.; S.G. Wright; T.L. Brandon 2014 Soil strength and slope stability. John Wiley & Sons, Inc. 317pp

² https://scribehow.com

Duncan et al Fig 14.7

Screen shots captured by Scribe

Type "Duncan Wright Brandon 2014 Figure 14.7 [[tab]]"

ntie Duncan Wright Brandon 201	4 Figure 14 7
Jescription	arigure 14.1
rescription	^

Type "An example where the slip surface with the minimum factor of safety may not be the slip surface of greatest interest."

5 Click "Preferences"

TSLOPE

File Edit View Data Tools Help

New) Open	کے Save	Preview	Print	D Show BB	Show Axes	ی Zoom Extents	/// Sync Vier
- TSI	OPE			2 Project				
1-17	Title and Descrip	tion		1				
	Preferences							
~ 1	Materials							
L.	Default							
> -	Surfaces							
4.0	Layers							
	Zones							
	Volumes							
	Maptek							
	Drillholes							
> 1	Loads							
5.1	Reinforcement							
	Cross-sections							
	Slopes							

4

6 Click the pull down box to change from Metric to U.S. Customary

Project		
Units	Metric	
Weight of water	9.8 kN/m ³	The system of units are fixed once the first ton surface is add
Atmospheric Pressure	101.3 kPa	
Coordinate System		
EPSG	0	
Project Clipping		
Enable clipping	False	
Graphics		
Background colour	White	

7 Click U.S. Customary

9 Project							
Units		Metric					
Weight of w	/ater	Metric					
Atmospheri	c Pressure	U.S. Customary					
Coordinate	Coordinate System						
EPSG		0					
Project Clip	ping						
Enable clipp	oing	False					
B Graphics							
Background	l colour	White					
Ocontours							
Definition		auto					
Interval		10					

8 Click "Default"

TSLOPE

10	Type	"fill"
	1900	

M	aterial Anisotropy	
-	Material	
	Id	0
	Label	fill
	Failure criterion	Mohr-Coulomb
-	Unit Weights	All second s
	Unsaturated	100 pcf
	Saturated	112 pcf
Ξ	Mohr-Coulomb	
	Cohesion function	Constant
	Cohesion	0 psf
	Angle of friction	10 °
Ξ	Colour	
	Colour	(176,54,177)

11 Change the Unit Weights

Material	Anisotropy			
) Mate	rial			
Id		0		
Labe	D.	fill		
Failu	re criterion	Mohr-Coulomb		
Unit	Weights			
Unsa	turated	100 pcf		
Satur	ated	112 pci		
8 Moh	r-Coulomb			
Cohe	sion function	Constant		
Cohe	sion	0 psf		
Angl	e of friction	10 *		
Color	ır			
Colo	ur	(176,54,177)		

(Ê) 0 ≻ -50

-10(

Type "124"

N	laterial Anisotrony	
G	Material	
	ld	0
	Label	fill
	Failure criterion	Mohr-Coulomb
Ę	Unit Weights	
	Unsaturated	12
	Saturated	112 pcf
E	Mohr-Coulomb	
	Cohesion function	Constant
	Cohesion	0 psf
	Angle of friction	10 *
E	Colour	
	Colour	(176,54,177)

Click here:

terial Anisotropy	
Material	
Id	0
Label	fill
Failure criterion	Mohr-Coulomb
Unit Weights	
Unsaturated	124
Saturated	112 pcf
Mohr-Coulomb	
Cohesion function	Constant
Cohesion	0 psf
Angle of friction	10 *
Colour	
Colour	(176,54,177)

Type "124"

laterial Anisotropy	
Material	
ld	0
Label	fill
Failure criterion	Mohr-Coulomb
Unit Weights	
Unsaturated	124 pcf
Saturated	12
Mohr-Coulomb	111-12X
Cohesion function	Constant
Cohesion	0 psf
Angle of friction	10 *
Colour	
Colour	(176,54,177)

Change Mohr-Coulomb values

17 Туре "30" Material Anisotropy \succ Material Material ld. 0 Label fill Failure criterion Mohr-Coulomb Unit Weights -50 Unsaturated 124 pcf Saturated 124 pcf B Mohr-Coulomb Cohesion function Constant Cohesion 0 psf Angle of friction 30 -10(Colour Colour (176,54,177) Starting TSLOPE 1 3D Geometry Report Snapshots 4

18 Change the material colour

19 Click "..."

	Failure criterion	Mohr-Coulomb			
Ξ	Unit Weights		111		
	Unsaturated	124 pcf			
	Saturated	124 pcf			
Ξ	Mohr-Coulomb				
	Cohesion function	Constant			
	Cohesion	0 psf			
	Angle of friction	30 °			
	Colour				
	Colour	(176,54,177)			

21 Click "Materials"

TSLOPE

File Edit View Data Tools Help

New	Upen (کے Save	III Preview	Print	D Show BB	L∠ Show Axes	,© Zoom Extents	/// Sync Views	Cop
- TSL	OPE			Ø Project					
	Title and Descrip	tion							
	Preferences								
v .	Materials								
1 1	-611								
> -	Surfaces								
1	Layers								
	Zones								
	Volumes								
	Maptek								
	Drillholes								
>	Loads								
>	Reinforcement								
	Cross-sections								
L	Slopes								

22 Click "Add Material..."

New	🐚 🊵 Open Save	Preview	Print	Show BB	∠ Show Axes	ی Zoom Extents	/// Sync Views	Cop
- TSLO	OPE		Ø Project					
	Title and Description							
P	Mate							
	fil Materials							
> - 🔤 S	Surfa Add Material							
L	Layers							
Z	Zones							
	Volumes							
V	dantek.							
	Maptek Drillholes							
	Maptek Drillholes Loads							
>	Maptek Drillholes Loads Reinforcement							
>	Maptek Drillholes Loads Reinforcement Cross-sections							
>	Maptek Drillholes Loads Reinforcement Cross-sections Slopes							

23 Click here:

Mate	erial Anisotropy	
O N	laterial	
10	ł	1
L	abel	Copy of fill
F	ailure criterion	Mohr-Coulomb
ΞU	Init Weights	
U	Insaturated	124 pcf
S	aturated	124 pcf
• N	Iohr-Coulomb	
C	ohesion function	Constant
c	ohesion	0 psf
A	ngle of friction	30 °
Ξ C	olour	10.0
C	olour	(247 186 100)

24 Type "clay"

_		
N	laterial Anisotropy	
Ξ	Material	
	Id	1
	Label	clay
	Failure criterion	Mohr-Coulomb
E	Unit Weights	
	Unsaturated	124 pcf
	Saturated	124 pcf
E	Mohr-Coulomb	
	Cohesion function	Constant
	Cohesion	0 psf
	Angle of friction	30 °
E	Colour	
	Colour	(247 186 100)

25 Change Unit Weights

Mate	rial	Anisotropy	
∃ N	late	rial	
le	1		1
L	abel		clay
F	ailur	e criterion	Mohr-Coulomb
= U	nit \	Veights	
U	nsat	urated	124 pcf
S	atura	sted	124.pcf
= N	lohr	-Coulomb	
C	ohe	sion function	Constant
C	ohe	sion	0 psf
A	ngle	of friction	30 "
= C	olou	r	
C	olou	ır	(247,186,109)

26 Type "98"

Material Anisotropy	
E Material	
ld	1
Label	clay
Failure criterion	Mohr-Coulomb
Unit Weights	and the second sec
Unsaturated	9
Saturated	124 pcf
B Mohr-Coulomb	10
Cohesion function	Constant
Cohesion	0 psf
Angle of friction	30 °
E Colour	1
	(247 186 109)

27 Click here:

M	aterial Anisotrop	ру
Ξ	Material	
	ld	1
	Label	clay
	Failure criterion	Mohr-Coulomb
Э	Unit Weights	
	Unsaturated	98
	Saturated	124 pcf
3	Mohr-Coulomb	
	Cohesion functi	on Constant
	Cohesion	0 psf
	Angle of friction	30 *
Э	Colour	
	Colour	(247,186,109)

Type "98"

M	aterial Anisotropy		
Ξ	Material		
	ld	1	
	Label	clay	
	Failure criterion	Mohr-Co	ulomb
	Unit Weights		
	Unsaturated	98 pcf	
	Saturated	9	
Ξ	Mohr-Coulomb		
	Cohesion function	Constant	1
	Cohesion	0 psf	
	Angle of friction	30 *	
Ξ	Colour		
	Colour	(247	7,186,109)

Change Mohr-Coulomb values

Ξ	Material	
	Id	1
	Label	clay
	Failure criterion	Mohr-Coulomb
Э	Unit Weights	
	Unsaturated	98 pcf
	Saturated	98
3	Mohr-Coulomb	
	Cohesion function	Constant
	Cohesion	0 psf
	Angle of friction	30-
Э	Colour	
	Colour	(247,186,109)

Type "500"

Ξ	Material	
	Id	1
	Label	clay
	Failure criterion	Mohr-Coulomb
=	Unit Weights	
	Unsaturated	98 pcf
	Saturated	98 pcf
•	Mohr-Coulomb	
	Cohesion function	Constant
	Cohesion	50
	Angle of friction	30 *
Ð	Colour	
	Colour	(247,186,109)

Click here:

Change Material colour

Failure criterion	rion Mohr-Coulomb		
E Unit Weights			
Unsaturated	98 pcf		
Saturated	98 pcf		
Mohr-Coulomb			
Cohesion function	Constant		
Cohesion	500 psf		
Angle of friction	0 °		
E Colour			
Colour	(247,186,109)		
		8	
:			
tarting TSLOPE	^	Naniso con minute	

33 Click "OK"		
	*	
Custom colors:	Hue: 142 Red: 55 Sat: 116 Green: 102 Color/Solid Lum: 100 Blue: 158 Add to Custom Colors Image: Color Solid Image: Color Solid Image: Color Solid	100
Slopes		50
Material Anisotropy		(Ξ) ≻ 0

34 Click "Materials"

TSLOPE File Edit View Data Tools Help -P 111 10 3 明 K Open Print New Save Show BB Show Axes Zoom Extents Sync Views Copy Preview V- TSLOPE Deroject **Title and Description** Preferences Materials fill clay Surfaces Layers Zones Volumes Maptek Drillholes Loads Reinforcement Cross-sections Slopes

35 Click "Add Material..."

TSLOPE

File Edit View Data Tools Help

36 Change Label

_		
M	aterial Anisotropy	
=	Material	
	ld	2
	Label	Copy of fill
	Failure criterion	Mohr-Coulomb
Ξ	Unit Weights	
	Unsaturated	124 pcf
	Saturated	124 pcf
Ξ	Mohr-Coulomb	
	Cohesion function	Constant
	Cohesion	0 psf
	Angle of friction	30 *
Ξ	Colour	
	~ 1	(5.47.75)

37 Type "rock"

		Transfer to the second s			
Mat	terial	Anisotropy			
	Material				
	ld		2		
	Label		rock		
	Failure criterion		Mohr-Coulomb		
	Unit Weights				
1	Unsat	urated	124 pcf		
Ī	Saturated		124 pcf		
(B) (Mohr	-Coulomb			
5	Cohesion function		Constant		
	Cohesion		0 psf		
	Angle	of friction	30 *		
8	Colou	г	10.000		
	Colou	IF.	(3 47 79)		

38 Change Failure criterion

Ma	aterial	Anisotropy			
	Mater	rial			
	Id		2		
	Label		rock		
	Failure criterion		Mohr-Coulomb		
•	Unit Weights				
	Unsaturated		124 pcf		
	Saturated		124 pcf		
=	Mohr-Coulomb				
	Cohesion function		Constant		
	Cohesion		0 psf		
	Angle of friction		30 °		
=	Colou	r			
	Colou	ır	(3,47,79)		

39 Click the pull down box to change the Failure criterion

Mat	terial	Anisotropy			
3 1	Material				
	ld		2		
3.	Label		rock		
	Failure criterion		Mohr-Coulomb		
	Unit Weights				
	Unsat	urated	124 pcf		
	Saturated		124 pcf		
3	Mohr	-Coulomb			
	Cohesion function		Constant		
	Cohesion		0 psf		
	Angle of friction		30 °		
	Colou	r			
	Colou	r	(3,47,79)		

40 Select Bedrock

41 Change the material colour

42 Click "OK" Custom colors: Hue: 160 Red: 160 Sat: 0 Green: 160 100 Color/Solid Lum: 151 Define Custom Colors >> Blue: 160 OK Cancel Add to Custom Colors Cross-sections 50 (E) ≻ 0 Material

43 Click "Surfaces"

New	ben 🐚	Save	Preview	Print	D Show BB	∠ Show Axes	ر Zoom Extents	/// Sync Views	Cop
- TSLO	OPE			'Ø Project					
	litle and Descript	ion							
	Preferences								
Y 🔤 I	Materials								
	fill								
	clay								
1-1	rock								
2-10-	Surfaces								
	ayers								
2	Zones								
	/olumes								
	Maptek								
[Drillholes								
	oads								
> 1									
>	Reinforcement								
	Reinforcement Cross-sections								

44 Click "Top"

Unlock the extruded section

•	Top Surface Extruded Section					
	ld	1				
	Label	Top Extruded Section 1				
	Туре	Extruded Section Top Surface				
	Role					
1	Geometry					
	Is locked					
No.	Origin	ft				
	Х	0 ft				
	γ	0 ft				
	Z	0 ft 0 *				
	Extrusion bearing (deg.)					
ł	Overall width	100 ft	1			
I	Points: X (ft), Z (ft)	(0, 0), (100, 100)				
K	Surface style					
ľ	Geo-Image	None				

Open the points file to add points

	Role	Top Surface	- 67		
	Geometry				
	Is locked				
٦	Origin	ft			
	Х	0 ft			
	Y	0 ft			
	Z	0 ft			
	Extrusion bearing (deg.) 0 °				
	Overall width 100 ft		_		
	Points: X (ft), Z (ft)	(0, 0), (100, 100)			
Ξ	Surface style		1		
	Geo-Image	None			
	Colour	(24,184,74)			
	Opacity	100			
	Surface representation	Surface			
	Shading	Flat			
_					
A	dding Top Surface Extrude	ed Section surface	^		
1	institute adding extrated s	ection (top surrace)	~	3D Geometry	3D Geometry Report Snaps

48 Add the points (X,Z pairs) Click "OK"

51 Click "Add Plane..."

Layer Surfaces

A Layer surface allows material properties to be defined as layered strata.

The layer surface defines the top of the extent of the assigned material properties; the material properties are assumed to be constant below this layer surface, until another layer surface is encountered.

The region above the highest layer surface

52 Change the Label

53 Type "clay"

54 Assign the Material "clay" to the Layer

La	yer 1				
	Layer Surface Plane		^		
	Id	1			
	Label	clay			
	Туре	Plane			
	Role	Layer Surface			
	Is a Discontinuity?				
	Material	0: fill	~		
Ξ	Geometry	0: fill			
	Is locked	1: clay			
Ξ	Centre point	2: rock	~		
	Х	60 ft			
	Y	0 ft			
	Z	24.5 ft			
	Unit normal vector	(0, 0, 1)			
	Х	0			
	Y	0			
	Z	1			
	Dip angle (deg)	0 *			
	Dip bearing (deg)	0 *	v		

55 Unlock the Plane

Layer 1			
Eaver Surface Plane		^	
Id	1		
Label	clay		
Туре	Plane		
Role	Layer Surface		
Is a Discontinuity?			
Material	1: clay	~	
Geometry	Geometry		
Is locked			
E) Centre point	(60, 0, 24.5) ft		
Х	60 ft		
Y	0 ft		
Z	24.5 ft		
 Unit normal vector 	(0, 0, 1)		
X	0		
Y	0		
Z	1		
Dip angle (deg)	0 *		
Dip bearing (deg)	0 *	v	

Change the Z value of Centre point

Type "15"

	Label	clay	
	Туре	Plane	
	Role	Layer Surface	
	Is a Discontinuity?		
	Material	1: clay	
Ξ	Geometry		
	Is locked		
8	Centre point	(60, 0, 24.5) ft	
	Х	60 ft	
	Y	0 ft	
	Z	15	
•	Unit normal vector	(0, 0, 1)	
	х	0	
	Ŷ	0	
	Z	1	
	Dip angle (deg)	0 *	
	Dip bearing (deg)	0°	~
Ad	ding Layer Surface Plan	ne surface	
Fin	ished adding Plane (La	iyer Surface)	

Change the size of the plane

Type "120"

Layer Surfaces

A Layer surface allows material properties to be defined as layered strata.

The layer surface defines the top of the extent of the assigned material properties; the material properties are assumed to be constant below this layer surface, until another layer surface is encountered.

64 Change Label

66 Assign Material "rock" to the layer

67 Unlock plane geometry

La	yer 2					
Ξ	Layer Surface Plane					
	ld	2				
	Label	rock				
	Туре	Plane				
	Role	Layer Surface				
	Is a Discontinuity?					
	Material	2: rock 🗸 🗸				
Ξ	Geometry					
	Is locked					
Ξ	Centre point	(60, 0, 15) ft				
	Х	60 ft				
	Y	0 ft				
	Z	15 ft				
0	Unit normal vector	(0, 0, 1)				
	Х	0				
	Y	.0				
	Z	1				
	Dip angle (deg)	0 "				
	Dip bearing (deg)	0 °	~			

68 Change Z coordinate of Centre point to "0"

69 Change plane size

Made with Scribe - https://scribehow.com

70 Type "100"

74 Click "Add cross-section..."

75 A suitable section is presented, so click to lock its position

76 Click "Slopes"

Slopes

A project consists of one or more slopes. Multiple slopes allow parametric studies to investigate the stability of slopes when various aspects of the slope vary, e.g. material properties, pore pressure and phreatic surface variation, and any other parameter of interest.

Each slope must have a top and a basal surface defined before an analysis is carried out. Phreatic and pore-pressure surfaces are

77 Click "Add 2D Slope ... "

aspects of the slope vary, e.g. material properties, pore pressure and phreatic surface variation, and any other parameter of interest.

Each slope must have a top and a basal surface defined before an analysis is carried out. Phreatic and pore-pressure surfaces are optional.

If a back-analysis is to be performed, the material properties are assumed to be of one

79 The slip circle for the 2D slope case is defined by entry and exit points for a circle

We can move the right bound marker to the toe of the slope

Made with Scribe - https://scribehow.com

83 The light grey panel shows the limits for entry and exit points for the circular search. We then Click " Solve "

88 The factor of safety is calculated: 1.21 (Duncan et al. reported 1.21)

The slip circle shown in the 2D slope case is represented in 3D as a sphere. We want to change the sphere to an ellipse which we believe is more representative of a potential 3D failure surface.

89

We duplicate the Basal surface

94 change the radius in the Y direction to about half of the x radius

96 Click "control"

Made with Scribe - https://scribehow.com

98 Add 3D Slope ...

Z (ft)

A project consists of one or more slopes. Multiple slopes allow parametric studies to investigate the stability of slopes when various aspects of the slope vary, e.g. material properties, pore pressure and phreatic surface variation, and any other parameter of interest.

Each slope must have a top and a basal surface defined before an analysis is carried out. Phreatic and pore-pressure surfaces are optional

100 Click " Solve "

101 Remove the overlying surfaces to show the slip ellipse

